skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tayou, Salim"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Given a smooth quasi-projective complex algebraic variety $$\mathcal{S}$$, we prove that there are only finitely many Hodge-generic non-isotrivial families of smooth projective hypersurfaces over $$\mathcal{S}$$ of degree $$d$$ in $$\mathbb{P}_{\mathbb C}^{n+1}$$. We prove that the finiteness is uniform in $$\mathcal{S}$$ and give examples where the result is sharp. We also prove similar results for certain complete intersections in $$\mathbb{P}_{\mathbb C}^{n+1}$$ of higher codimension and more generally for algebraic varieties whose moduli space admits a period map that satisfies the infinitesimal Torelli theorem. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  2. Free, publicly-accessible full text available January 1, 2026
  3. Abstract Given a Brauer class on a K3 surface defined over a number field, we prove that there exists infinitely many reductions where the Brauer class vanishes, under certain technical hypotheses, answering a question of Frei–Hassett–Várilly‐Alvarado. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  4. Abstract Given a K3 surface X over a number field K with potentially good reduction everywhere, we prove that the set of primes of K where the geometric Picard rank jumps is infinite. As a corollary, we prove that either $$X_{\overline {K}}$$ has infinitely many rational curves or X has infinitely many unirational specialisations. Our result on Picard ranks is a special case of more general results on exceptional classes for K3 type motives associated to GSpin Shimura varieties. These general results have several other applications. For instance, we prove that an abelian surface over a number field K with potentially good reduction everywhere is isogenous to a product of elliptic curves modulo infinitely many primes of K . 
    more » « less